Synthesis and Crystal Structure of *tert*-Butylamino(di-*tert*-butyl)siliceniotrichloroaluminate, $(Me_3C)_2Si=NCMe_3 \cdot AlCl_3$, and Dimethylazomethine–Aluminium Trichloride, $Me_2C=NH \cdot AlCl_3^{\Rightarrow}$

Uwe Klingebiel*, Mathias Noltemeyer^[+], Hans-Georg Schmidt^[+], and Dieter Schmidt-Bäse^[+]

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany

Fax: (internat.) +49(0)551/39-3373

E-mail: uklinge@gwdg.de

Received November 22, 1996

Keywords: Silicenium ion / Iminosilane / Aluminate / Silicon / Aluminium

Lithiated tert-butylaminofluorosilanes react with aluminium trichloride in ether, eliminating LiF to give AlCl₃ adducts of iminosilanes — aminosiliceniotrichloroaluminates (R₂Si-

 $NCMe_3 \cdot AlCl_3$), which thermally form the dimethylazomethine-aluminium trichloride, $Me_2C=NH \cdot AlCl_3$.

Although it has been found both theoretically^[1] and experimentally^[2] that in the gas phase the parent silicenium ion, SiH₃⁺, is more stable than the analogous carbenium ion, the literature records numerous unsuccessful attempts to isolate trivalent silyl cations^[3]. Early attempts to prepare silicenium ions followed the route of carbenium ions. However, attempts at protonation and dehydration of silanoles proved to be unsuccessful^[3]. While the reaction of haloboranes^[4] and halophosphanes^[5] with Lewis acids, e.g. AlCl₃, led to the formation of borinium cations, R₂B⁺, and phosphenium cations, R₂P⁺, treatment of halosilanes with Lewis acids led to species described as having polarized bonds, for example^[6]:

$$Me_3SiBr + AlBr_3 \rightarrow Me_3Si\cdots Br\cdots AlBr_3$$

Eaborn showed in 1981 that the methanolysis of (Me₃Si)₃-CSiR₂I might well proceed via a methyl-bridged intermediate silicenium ion^[7]. Silicenium ions in solution have been reported by Corey and co-worker^[3].

$$Me_3Si$$
 C
 \bigoplus
 Me_3Si
 Si
 R_2

In 1994 Corriu published the first X-ray structure of an intramoleculary coordinated silyl cation using the conformationally rigid 8-(dimethylamino)naphthalene substituent^[8], and very recently Belzner reported the synthesis and the solid-state structure of two silyl cations bearing the 2-[(dimethylamino)methyl]phenyl substituent^[9].

In 1983, encouraged by the reported adduct of an iminophosphene with $AlCl_3^{[10]}$, $(R_2NPNR-AlCl_3, R = SiMe_3)$, we investigated the reaction of LiF adducts of iminosilanes

with AlCl₃. We isolated compounds that we described as AlCl₃ adducts of silicenium ylides: four-membered rings with bridging chlorine atoms^[11]. Although these were the first unsaturated Si-N compounds to be reported in the literature, they were not noticed, perhaps because the crystal-structure data were missing. Hydrolysis produced the aminoalane $Me_3CNH_2-AlCl_3$ and the cyclic siloxane $(R_2Si-O)_3$ due to attack of the oxygen atom (from H_2O) at the electropositive silicon atom.

$$\begin{array}{c} CMe_{3} \\ R \\ Si \\ Cl \end{array} + H_{2O} \\ R \\ Cl \end{array}$$

$$\begin{array}{c} \frac{1}{3} (R_{2}Si-O)_{3} \\ + H_{2O} \\ Me_{3}C-NH_{2} \cdot AlCl_{3} \end{array}$$

$$(1)$$

$$R = CMe_{3}$$

In the reaction of an iminosilane with trimethylalane, AlMe₃, we previously succeeded in the isolation of a monomeric iminoalane, formed by migration of the nucleophilic methanid ion from the aluminum to the trivalent silicon atom^[12]. This reaction and the possibility of obtaining low-temperature X-ray structure data prompted us to renew our study of the above-mentioned AlCl₃ adduct.

$$Si=N- \xrightarrow{AlMe_3} - Si-N \xrightarrow{AlMe_2} (2)$$

Reaction of R₂SiFLiNCMe₃^[13] with AlCl₃ in ether leads to elimination of LiF and formation of a 1:1 adduct of the intermediate iminosilane with AlCl₃. Compounds 1^[11] and 2 are colourless, extremcly moisture-sensitive solids, and can be distilled without decomposition in vacuo. The silicenium character is supported by the low-field ²⁹Si-NMR

^[*] Crystal structure.

chemical shifts ($\delta = 50.4$ for 1 and $\delta = 49.3$ for 2). In contrast to 1, compound 2 could be distilled in vacuo without loss of O(CH₂CH₃)₂; that means the intermediate iminosilane forms and adduct between a Lewis base and a Lewis acid. In the ¹³C-NMR spectrum of 2 the C₂O-signal of the ether molecule appears at $\delta = 71.7$, i.e. it is shifted 5 ppm downfield compared with free diethyl ether. This reflects the strong Lewis acid character of the three-coordinate silicon, as was found also in THF adducts of iminosilanes^[12,13].

$$R - S_{i} - N$$

$$R - S_{i} - N$$

$$Et_{2}O$$

$$Me_{3}C$$

$$Me_{3}C$$

$$Me_{3}C$$

$$Me_{3}C$$

$$Me_{2}HC$$

$$CI$$

$$Me_{2}HC$$

$$CI$$

$$Me_{2}HC$$

$$CI$$

$$Et_{2}O$$

$$Me_{2}HC$$

$$CI$$

$$Et_{2}O$$

$$Me_{2}HC$$

$$CI$$

$$Et_{2}O$$

$$AICl_{2}$$

$$Me_{2}HC$$

$$CI$$

$$Et_{2}$$

$$AICl_{2}$$

$$Et_{2}$$

$$AICl_{2}$$

$$Et_{2}$$

$$AICl_{2}$$

Experiments to cleave the ether adduct 2 thermally led to the formation of the dimethylazomethine—aluminium trichloride, $Me_2C=N(H)AlCl_3$ (3), and polymers. 3 was also obtained thermally from 1. Compared with the above-mentioned Me^{\ominus} migration from aluminum to the trivalent silicon atom^[12], the formation of 3 can be most satisfactorily interpreted with migration of a Me^{\ominus} ion from the *tert*-butyl group to the silicon atom.

To our knowledge, the free dimethylazomethine species is still unknown. X-ray structural analyses were carried out with single crystals of 1 and 3, crystallized from n-hexane. The structure determination of 1 confirms the structure suggested on the basis of the NMR data^[11]. 1 forms a planar four-membered ring with two significantly long chlorine bridging bonds (Al-Cl 223.2 pm, Si-Cl 231.8 pm). The length of the Si-N bond is found in the normal range for a single bond (170.6 pm); however, the Al-N bond (180.9 pm) is short in comparison to the sum of the aluminium and nitrogen covalent radii (i.g. 200 pm), which suggests the presence of Al-N $p\pi$ - $p\pi$ bonding. However, the dihedral angle Cl(1)-Al(1)-N(1)-Si(1) of 105.6° makes this limited. Therefore most of the shortening of the Al-N bond should be attributed to the difference between the electronegativities of the atoms. The coordination of the nitrogen atom is planar (sum of the bond angles around N

Figure 1. Molecular structure of 1, 50% probability level

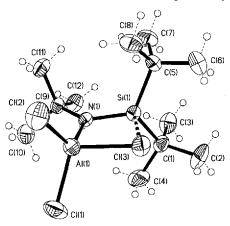


Table 1. Selected bond lengths (pm) and angles (°) for 1

Al(1)-N(1)	180.9(3)	Al(1)-Cl(2)	210.6(2)
Al(1)-Cl(1)	211.2(2)	Al(1)-Cl(3)	231.8(2)
Cl(3)-Si(1)	223.15(14)	Si(1)-N(1)	170.6(3)
Si(1)-C(5)	189.1(4)	Si(1)-C(1)	190.4(4)
N(1)-C(9)	149.1(5)		
N(1)-Al(1)-Cl(2)	119.47(12)	N(1)-Al(1)-Cl(1)	121.89(12)
Cl(2)-Al(1)-Cl(1)	110.77(7')	N(1)-Al(1)-Cl(3)	85.66(11)
Cl(2)-Al(1)-Cl(3)	107.87(7)	Cl(1)-Al(1)-Cl(3)	105.57(7)
Si(1)-Cl(3)-Al(1)	76.66(5)	N(1)-Si(1)-C(5)	117.7(2)
N(1)-Si(1)-C(1)	118.4(2)	C(5)-Si(1)-C(1)	117.9(2)
N(1)-Si(1)-Cl(3)	90.91(11)	C(5)-Si(1)-Cl(3)	101.97(13)
C(1)-Si(1)-Cl(3)	101.77(13)	C(9)-N(1)-Si(1)	130.5(2)
C(9)-N(1)-Al(1)	122.6(2)	Si(1)-N(1)-Al(1)	106.8(2)

Figure 2. Molecular structure of 3, 50% probability level

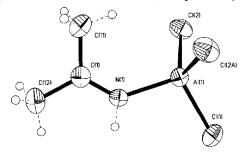


Table 2. Bond lengths (pm) and angles (°) for 3

Al(1)-N(1)	189.8(3)
Al(1)-Cl(2)	211.79(8)
Al(1)-Cl(1)	211.97(12)
N(1)-C(1)	128.2(4)
C(1)-C(11)	147.3(4)
C(1)- C(12)	148.4(5)
N(1)-Al(1)-Cl(2)	108.81(5)
Cl(2)-Al(1)-Cl(2A)	110.88(5)
N(1)-Al(1)- Cl(1)	102.52(8)
Cl(2)-Al(1)-Cl(1)	112.69(3)
C(1)-N(1)-Al(1)	131.7(2)
N(1)-C(1)-C(11)	120.5(3)
N(1)-C(1)-C(12)	121.8(3)
C(11)C(1)-C(12)	117.7(3)

Symmetry transformations used to generate equivalent atoms: #1 x, -y + 1/2, z.

359.9°). The coordination of the aluminium and silicon atoms without the Cl···Al and Cl···Si adduct bond is almost planar (sum of the bond angles around Cl_2AlN 352.1° and around C_2SiN 354.0°). This proves the silicenium character of 1.

3 exists in the solid state as a simple monomer, the adduct of $Me_2C=NH$ wit $AlCl_3$.

We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for financial support.

Experimental Section

Compounds were handled in a dry nitrogen atmosphere.

 $(C_3H_7)_2$ SiNCMe₃ · AlCl₃ · O(CH₂CH₃)₂ (2): A solution of 0.01 mol AlCl₃ in 100 ml Et₂O was added dropwise at room temperature to a stirred solution of 0.01 mol of the lithiated aminofluorosilane $(C_3H_7)_2$ SiFNLiCMe₃ in 100 ml *n*-hexane. When the exothermic reaction was complete, the raw product was separated from LiF and 2 purified by distillation.

2: $C_{14}H_{33}AlCl_3NOSi$ (391.63): 2.1 g (54%) yield, b.p. 106°C/0.01 mbar. MS (field-ion mass spectroscopy): 391 M⁺. – ¹H NMR (30% in C_6H_{12} ; C_6D_6 , TMS int.): $\delta = 1.03$ OCH₂CH₃, 1.2–0.95, C_3H_7 , 1.25 CMe₃, 3.90 OCH₂. – ¹³C NMR: $\delta = 16.4$ OC₂C₂, 16.8 SiCC, 17.0 SiCC, 17.6 SiC, 35.1 NCC₃, 52.7 NC, 71.7 OC₂C₂. – ²⁹Si NMR: $\delta = 49.2$.

3: $C_3H_7NAlCl_3$ (190.44): Pure 2 (0.5 g) was tempered at 130°C for 5 h and the residue recrystallized from *n*-hexane. 0.2 g (82%) yield. $-^{13}C$ NMR (C_6D_6 , TMS int.): $\delta = 27.5$ CH₃, 27.9 CH₃, 200.6 N=C.

Crystal Data of 1^[14]: Space group $P2_1/n$, monoclinic, a = 784.6(1), b = 1696.9(2), c = 1413.8(1) pm, β = 96.270(10), V = 1.8711(4) nm³, Z = 4, $ρ_{calc.} = 1.231$ Mg/m³, crystal size $0.3 \times 0.3 \times 0.1$ mm, μ (Mo- $K_α$) = 0.587 mm⁻¹, wavelength = 71.073 pm, 6990 reflections measured in the range 2Θ = 7.1-40.1°, of which 1749 independent reflections were used for refinement on R2 = 172 parameter, wR2 = 0.0822 (all data) and R1 = 0.0530 [for F >

 $4\sigma(F)$]. Maximal and minimal residual electron density: 198 and -179 e nm³. Selected bond lengths and angles are compiled in Table 1.

Crystal Data of $3^{[14]}$: Space group Pnma, orthorhombic, a = 1426.8(3), b = 740.5(1), c = 811.5(2) pm, V = 0.8574(3) nm³, Z = 4, $\rho_{\text{calc.}} = 1.475$ Mg/m³, crystal size = $0.4 \times 0.3 \times 0.3$ mm, μ (Mo- K_{α}) = 1.083 mm⁻¹, wavelength = 71.073 pm, 2251 reflections between $\theta = 3.72$ to 22.50° measured, of which 610 independent were used for refinement: 46 parameter, wR2 = 0.0785 (all data) and R1 = 0.0280 [for $F > 4\sigma(F)$]. Maximal and minimal residual electron density: 275 and -297 e nm⁻³. Selected bond lengths and angles are compiled in Table 2.

ganomet. Chem. 1983, 249, 47; W. Clegg, M. Haase, U. Klingebiel, J. Neemann, G. M. Sheldrick, J. Organomet. Chem. 1983, 251, 281.

[96256]

^{*} Dedicated to Prof. A. Meller on the occasion of his 65th birth-day.

Y. Apeloig, P. v. Rague Schleyer, Tetrahedron Lett. 1977, 4646.
 M. K. Murphy, J. L. Beauchamp, J. Am. Chem. Soc. 1976, 98, 5781.

^[3] J. B. Lambert, W. J. Schulz, The Chemistry of Organic Silicon Compounds (Eds.: S. Pattai, Z. Rappaport), Wiley, Chichester, 1989, 2, 1015, and references therein.

^[4] H. Nöth, R. Staudigl, H.-U. Wagner, *Inorg. Chem.* 1982, 21, 706; P. Kölle and H. Nöth, *Chem. Rev.*, 1985, 85, 399.

^[5] A. H. Cowley, R. A. Kemp, *Chem. Rev.* 1985, 85, 367.

^[6] G. A. Olah, L. D. Field, Organometallics 1982, 1, 1485.

^[7] S. S. Dua, C. Eaborn, J. Organomet. Chem. 1981, 204, 21.
[8] C. Breliére, R. Carré, R. Corriu, S. M. Wong Chi Man, J. Chem. Soc., Chem. Commun. 1994, 2333.

^[9] J. Belzner, D. Schär, B. O. Kneisel, R. Herbst-Irmer, Organometallics 1995, 14, 2333.

^[10] E. Niecke, D. Gudat, *Angew. Chem. Int. Ed. Engl.* **1991**, 30, 217. [111] W. Clegg, U. Klingebiel, J. Neemann, G. M. Sheldrick, *J. Or-*

^[12] J. Niesmann, U. Klingebiel, M. Noltemeyer, R. Boese, J. Chem. Soc., Chem. Commun. 1997, 365.

^[13] S. Walter, U. Klingebiel, Coord. Chem. Reviews, 1994, 130, 481.
[14] Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the depository numbers CSD-406515, and -406516.